(2)

I-237

B.Sc. (Part-III) Supplementary/Special Examination, 2021

MATHEMATICS

Paper - II

(Abstract Algebra)

Time Allowed: Three Hours

Maximum Marks: 50

Minimum Pass Marks: 17

नोट : सभी प्रश्न अनिवार्य है। प्रत्येक प्रश्न/इकाई से किन्हीं दो भागों को हल कीजिए। सभी प्रश्नों के अंक समान हैं।

Note: All questions are compulsory. Answer any two parts from each question/unit. All questions carry equal marks.

इकाई-I / UNIT-I

Q. 1. (a) सिद्ध करो कि एक समूह G की सभी स्वाकारिताओं का समूह द्विआधारी संक्रिया के रूप में फलनों के संयोजन के सापेक्ष एक समूह की रचना करता हैं।

Prove that the set of all automorphisms of a group forms a group with respect to compositions of functions as the composition.

(b) सिद्ध कीजिए कि G पर संयुग्मता सम्बन्ध एक तुल्यता सम्बन्ध है।

Prove that conjugacy is an equivalence relation on G.

(c) माना G एक परिमित समूह है। तब सिद्ध कीजिए कि $C_a = \frac{O(G)}{O\{N(a)\}} \ \ \text{अर्थात् G में a के संयुग्मों अवयवों की}$ संख्या G में a के प्रसामान्यक के सूचकांक के बराबर होती है।

Let G be a finite group. Then prove that the number of elements conjugate to a in G is the index of the normalizer of a in G that is

$$C_a = \frac{O(G)}{O\{N(a)\}}.$$

इकाई-II / UNIT-II

Q. 2. (a) सिद्ध कीजिए कि एक क्रम विनिमेयी वलय की प्रत्येक समाकारी प्रतिबिम्ब एक क्रम विनिमेयी वलय होता है।

Prove that every homomorphic image of a commutative ring is a commutative ring.

I-237 P.T.O.

I-237

(4)

- (b) सिद्ध कीजिए कि एक वलय R से वलय R' तक एक समाकारिता की अष्टि R की एक गुणजावली होती है। If $f:R \xrightarrow{into} R'$ is a homomorphism then prove that Kernel of f is an ideal of R.
- (c) वलयों की समाकारिता की मूलभूत प्रमेय का कथन लिखिए एवं सिद्ध कीजिए। State and prove fundamental theorem on homomorphism of rings.

इकाई-III / UNIT-III

Q. 3. (a) दर्शाइये कि सदिश समिष्ट V(F) के किसी अरिक्त उपसमुच्चय W के सदिश समिष्ट V(F) का उपसमिष्ट होने का आवश्यक एवं पर्याप्त प्रतिबन्ध है कि W सदिश योग एवं अदिश गुणन के सापेक्ष संवृत है।

Show that the necessary and sufficient condition for a non-empty subset W of a vector space V(F) to be a subspace of V is

- that W is closed under vector addition and scalar multiplication.
- (b) दर्शाइये कि $V_2(F)$ के सदिश (a_1, a_2) एवं (b_1, b_2) जहाँ F, सम्मिश्र संख्याओं का क्षेत्र है, रैखिकतः स्वतंत्र होते हैं यदि $a_1b_2-a_2b_1=0$ Show that the vectors (a_1, a_2) and (b_1, b_2) of $V_2(F)$, where F is the field of complex numbers are linearly independent if $a_1b_2-a_2b_1=0$
- (c) सिद्ध कीजिए कि परिमिततः जनित सदिश समिष्ट V(F) का प्रत्येक रैखिकतः स्वतंत्र उपसमुच्चय V के आधार का भाग होता है।

Show that every linearly independent subset of a finitely generated vector space V(F) forms a part of a basis of V.

I-237 P.T.O.

I-237

इकाई-IV / UNIT-IV

- - (b) कोटि शून्यता प्रमेय का कथन लिखिए एवं सिद्ध कीजिए।

range, rank, null space and nullity of T.

State and prove rank nullity theorem.

(c) दिखाइये कि निम्न आव्यूह A विकर्णनीय है:

$$A = \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$$

Show that the matrix A is diagonalizable:

$$A = \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$$

इकाई-V / UNIT-V

Q. 5. (a) उदाहरण सहित आन्तर-गुणन समिष्ट को परिभाषित की जिए।

Define inner product space with an example.

(b) दर्शाइये कि सदिशों का समुच्चय $S = \{(1, 2, 2), (2, -2, 1), (2, 1, -2)\}$ R^3 में लांबिक है।

Show that the set of vectors $S = \{(1, 2, 2),$

(2, -2, 1), (2, 1, -2) is orthogonal in \mathbb{R}^3 .

(c) ग्राम स्मिथ प्रक्रिया का प्रयोग कर (1, 1, -1, 1), (1, 2, 0, 1), (1, 0, 0, 1) से जनित उपसमिष्ट का प्रसामान्य लांबिक आधार प्राप्त कीजिए।

Use the Gram-Schmidt process of orthonormalisation to obtain an orthonormal basis of subspace generated by (1, 1, -1, 1), (1, 2, 0, 1), (1, 0, 0, 1).

I-237 100